

1. (a) Consider the function defined by

$$f(x) = e^{-ix}(\cos(x) + i \sin(x))$$

for  $x \in \mathbb{R}$ . Compute the derivative of  $f$  (the function  $x \rightarrow e^{\lambda x}$  satisfies the same differentiation properties when  $\lambda \in \mathbb{C}$  as in the case  $\lambda \in \mathbb{R}$ ). Show that  $f$  is constant and equal to 1 and, thus, verify Euler's formula.

(b) Show that, for any  $\alpha, \beta \in \mathbb{R}$ :

$$\begin{aligned}\cos(\alpha + \beta) &= \cos \alpha \cos \beta - \sin \alpha \sin \beta, \\ \sin(\alpha + \beta) &= \cos \alpha \sin \beta + \sin \alpha \cos \beta.\end{aligned}$$

(Hint: you might want to use Euler's formula for  $e^{i(\alpha+\beta)}$ .)

2. Calculate the real and imaginary parts of the following expressions:

$$\begin{array}{llll} \text{(a)} \ (1+2i)(2-3i) & \text{(c)} \ (1+i)^3 + (1-i)^3 & \text{(e)} \ \left(\frac{1}{i}\right)^{2025} & \text{(g)} \ \frac{2i^{19}-10i^{12}}{1+i} \\ \text{(b)} \ \frac{1-3i}{1+i} & \text{(d)} \ \frac{1}{1+i} + \frac{2}{1-i} & \text{(f)} \ e^{-1025\pi i} & \text{(h)} \ (1+\sqrt{3}i)^{10} \end{array}$$

3. Calculate the modulus and an argument of the following expressions:

$$\begin{array}{ll} \text{(a)} \ 5+5i & \text{(c)} \ \frac{1+\sqrt{3}i}{1-i} \\ \text{(b)} \ (-1+\sqrt{3}i)^{10} & \text{(d)} \ 3^i \end{array}$$

4. Determine all the complex solutions of the following equations:

$$\begin{array}{lll} \text{(a)} \ z^5 = 1 & \text{(c)} \ z^2 - z + 2 = 0 & \text{(e)} \ \frac{1}{z-i} + \frac{1}{z^2-1} = 0 \\ \text{(b)} \ z^4 = 4 + 4i & \text{(d)} \ z^4 - 2z^2 + i = 0 & \text{(f)} \ |z-1| = |z+1| \end{array}$$

5. Show that, for any  $x \in \mathbb{R}$ , the complex number

$$z = \frac{x+i}{x-i}$$

lies on the unit circle. Show also that every point on the unit circle except for  $z = 1$  can be expressed in the above form.

6. Characterize geometrically the following subsets of  $\mathbb{C}$ :

- (a)  $\left\{ z \in \mathbb{C} : |z - 1| = 1 \right\}$
- (b)  $\left\{ z \in \mathbb{C} : \frac{|z-1|}{|z-i|} = 1 \right\}$
- (c)  $\left\{ z \in \mathbb{C} : |z - 1| + |z + 1| = 3 \right\}$
- (d)  $\left\{ z \in \mathbb{C} : z = 1 + 2t + 4t^2i \text{ for } t \in \mathbb{R} \right\}$

7. Show the following equality between sets:

$$\left\{ z \in \mathbb{C}^* : z + \frac{1}{z} \in \mathbb{R} \right\} = \left\{ z \in \mathbb{C}^* : \operatorname{Im}(z) = 0 \text{ or } |z| = 1 \right\}.$$